FONCTIONS POLYNÔMES DE DEGRÉ 3

I. Définition

Exemples et contre-exemples :

$$-f(x) = 4x^3 + 1$$

$$-g(x) = x^3 - 2$$

sont des fonctions polynômes de degré 3.

$$-f(x) = 1 + x^2 - 2x^3$$

-m(x) = -x + 4

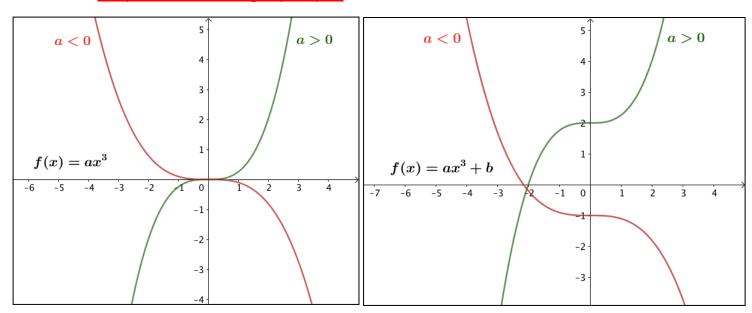
est une fonction polynôme de degré 1 (fonction affine).

 $-n(x) = 2x^5 - x^3 + 5x - 1$ est une fonction polynôme de degré 5.

<u>Définition</u>: Les fonctions définies sur \mathbb{R} par $x \mapsto ax^3$ ou $x \mapsto ax^3 + b$ sont des **fonctions polynômes de degré 3**.

Les coefficients a et b sont des réels donnés avec $a \neq 0$.

II. Représentation graphique



Propriétés:

Soit f une fonction polynôme de degré 3, telle que $f(x) = ax^3 + b$.

- Si *a* est positif, *f* est croissante.
- Si *a* est négatif, *f* est décroissante.

III. Forme factorisée d'une fonction polynôme de degré 3

Exemple:

La fonction f définie par f(x) = 5(x-4)(x-1)(x+3) est une fonction polynôme de degré 3 sous sa forme factorisée.

Si on développe l'expression de f à l'aide d'un logiciel de calcul formel, on obtient bien l'expression de degré $3: f(x) = 5x^3 - 10x^2 - 55x + 60$

Développer(
$$5(x-4)(x-1)(x+3)$$
)
 \rightarrow **5** $x^3 - 10$ $x^2 - 55$ $x + 60$

<u>Définition</u>: Les fonctions définies sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_3)$ sont des fonctions polynômes de degré 3.

Les coefficients a, x_1 , x_2 et x_3 sont des réels avec $a \neq 0$.

En partant de l'expression développée précédente, on peut vérifier que 4, 1 et -3 sont des racines du polynôme f.

$$f(4) = 5 \times 4^{3} - 10 \times 4^{2} - 55 \times 4 + 60 = 320 - 160 - 220 + 60 = \mathbf{0}$$

$$f(1) = 5 \times 1^{3} - 10 \times 1^{2} - 55 \times 1 + 60 = 5 - 10 - 55 + 60 = \mathbf{0}$$

$$f(-3) = 5 \times (-3)^{3} - 10 \times (-3)^{2} - 55 \times (-3) + 60 = -135 - 90 + 165 + 60 = \mathbf{0}$$

4, 1 et -3, solutions de l'équation f(x) = 0, sont donc des racines de f.

<u>Propriété</u>: Soit la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_3)$. L'équation f(x) = 0 possède trois solutions (éventuellement égales) : $x = x_1$, $x = x_2$ et $x = x_3$ appelées les **racines** de la fonction polynôme f.

<u>Méthode</u>: Étudier le signe d'un polynôme de degré 3

Vidéo https://youtu.be/g0PfyqHSkBg

Étudier le signe de la fonction polynôme f définie sur $\mathbb R$ par :

$$f(x) = 2(x+1)(x-2)(x-5)$$

2 étant un nombre positif, le signe de 2(x+1)(x-2)(x-5) dépend du signe de chaque facteur : x+1, x-2 et x-5.

On étudie ainsi le signe de chaque facteur et on présente les résultats dans un tableau de signes.

$$x + 1 = 0$$
 ou $x - 2 = 0$ ou $x - 5 = 0$
 $x = -1$ $x = 2$ ou $x = 5$

-1, 2 et 5 sont donc les racines du polynôme f.

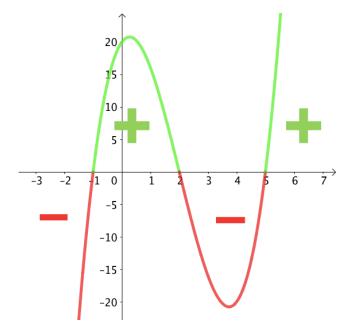
En appliquant la règle des signes dans le tableau suivant, on pourra en déduire le signe du produit f(x) = 2(x + 1)(x - 2)(x - 5).

x	$-\infty$		-1		2		5		$+\infty$
x+1		_	0	+		+		+	
x-2		_		_	0	+		+	
x-5		_		_		_	0	+	
f(x)		_	0	+	0	_	0	+	

On en déduit que $f(x) \ge 0$ pour $x \in [-1, 2] \cup [5, +\infty[$ et

$$f(x) \le 0 \text{ pour } x \in]-\infty; -1] \cup [2;5].$$

La représentation de la fonction f à l'aide d'un logiciel permet de confirmer les résultats établis précédemment.



IV. Équation de la forme $x^3 = c$

Méthode : Résoudre une équation du type $x^3 = c$

Vidéo https://youtu.be/4tQJRkplH3k

Résoudre dans \mathbb{R} les équations : a) $x^3 = 27$, b) $2x^3 - 6 = 16$

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

Propriété:

L'équation $x^3 = c$, avec c positif, possède une unique solution $\sqrt[3]{c}$.

Cette solution peut également se noter $c^{\frac{1}{3}}$.

a) On cherche le nombre qui, élevé au cube, donne 27.

Ce nombre est égal à la racine cubique de 27, soit : $x = \sqrt[3]{27} = 3$.

b)
$$2x^3 - 6 = 16$$

$$2x^3 = 16 + 6$$

$$2x^3 = 22$$

$$x^3 = 11$$

L'équation admet donc une unique solution $x = \sqrt[3]{11}$.

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales